DECLARATION OF PERFORMANCE DEMU Fixing anchor T-FIXX® ## CONF-DOP_T-FIXX 02/17-E No. H03-13/0222 | 1. | Unique identification code of the product-type | DEMU Fixing anchor T-FIXX | | | | | |----|---|---|--|--|--|--| | 2. | Type, batch or serial number or any other element allowing identification of the construction product as required pursuant to Article 11(4) | DEMU Fixing anchor T-FIXX
See ETA-13/0222, Annex A3 | | | | | | | Intended use or uses of the construction product, in accord technical specification, as foreseen by the manufacturer: | dance with the applicable harmonized | | | | | | | Generic type and use | Cast-in fixing anchor with internal threaded socket | | | | | | 3. | Product size covered | M10×50, M10×65, M10×75, M12×50, M12×70, M12×95,
M12×115, M16×60, M16×80, M16×100, M16×110, M16×125,
M20×70, M20×100, M20×125, M20×145 | | | | | | | For use in | Cracked and non-cracked concrete C20/25 to C90/105 according EN 206:2013 | | | | | | | Base material / base material strength | Electroplated steel for dry internal conditions Stainless steel for medium corrosion exposure | | | | | | | Loading | Static & quasi static tension and shear loads or the combination of tension and shear loads | | | | | | 4. | Name, registered trade name or registered trade mark and contact address of the manufacturer as required pursuant to Article 11(5) | HALFEN GmbH, Liebigstraße 14, 40764 Langenfeld, Germany | | | | | | 5. | Where applicable, name and contact address of the authorized representative whose mandate covers the tasks specified in Article 12(2) | - | | | | | | 6. | System or systems of assessment and verification of constancy of performance of the construction product as set out in Annex V | System 1 | | | | | | 7. | In case of the declaration of performance concerning a construction product covered by a harmonised standard | - | | | | | | 8. | In case of the declaration of performance concerning a construction product for which a European Technical Assessment has been issued | Deutsches Institut für Bautechnik (DIBt) issued ETA-13/0222 on the basis of EAD 330012-00-0601, Version September 2015, the notified body 2323 performed under system 1 (i) Determination of the product type on the basis of type testing (including sample-testing), type calculation, tabulated values or descriptive documentation of the product; (ii) Initial inspection of the manufacturing plant and of factory production control; (iii) Continuous surveillance, assessment and evaluation of factory production control and issued certificate 2323-CPR-0014. | | | | | | 9. | Essential Characteristics | Design Method | Performance | Harmonized Technical Specification | | |----|--|--|--------------------------------|------------------------------------|--| | | Characteristic resistance for tension | | ETA-13/0222, Annex C1 | | | | | Characteristic resistance for shear | CEN/TS 1992-4-1 and
CEN/TS 1992-4-2 | ETA-13/0222, Annex C2 | EAD 330012-00-0601, | | | | Displacement for serviceability limit state | | ETA-13/0222, Annexes C1 and C2 | Version September 2015 | | | | Characteristic resistance for fire | | ETA-13/0222, Annex C3 | | | | | Where pursuant to Article 3
Technical Documentation h
requirements with which th | as been used, the | - | | | | | The performance of the product identified in points 1 and 2 is in conformity with the declared performance in point 9. | | | | | Langenfeld, 06.02.2017 Signed for and on behalf of the manufacturer by Richard Wachter (Managing Director) ppa. Dr.-Ing. Dirk Albartus Mrs. Och Allts (Manager Engineering) | Thread | | d | [mm] | | M12 | M16 | M20 | | |--|--------------|---|--|-----------------------------|------------------|--|------------------|--| | Steel fallure, fixing anchor and screw (min. | steel streng | _ | | ī | | | | | | Characteristic resistance | | N _{Rk,s} | (kN) | 17.5 | 29.2 | 47.4 | 61.4 | | | Partial selety factor | | YMs 1) | [-] | 1 | | 1.74 | | | | Steel fallure, fixing anchor and screw (mln.) Characteristic resistance | steel streng | | | | 42.2 | 69.7 | 90.3 | | | Partial sefety factor | | N _{Rk} | (kN) | 24.9 | | | | | | Steel failure, fixing anchor and screw (min. | steel streng | YMs 1) | [-] | | 2.86 | 2.7 | 79 | | | Characteristic resistance | steer strong | N _{Rk,s} | (kN) | 24.9 | 43.5 | 69.7 | 90.3 | | | Partial sefety factor | | YMs 1) | [-] | 24.0 | 1 40.0 | 2.79 | 00.0 | | | | | 11 ma | 10.7 | | | | | | | Pull-out failure | | | | | | | | | | Fixing anchor electrolytically galvanised | 1 | Lo | Loren | | | 1 1 | | | | Charact. resistance in cracked concrete | C20/25 | | [kN] | 17.1 | 28.3 | 46.3 | 56.6 | | | Charact. resistance in uncracked concrete | C20/25 | N _{Rk,p} | [kN] | 24.0 | 39.6 | 64.8 | 79.2 | | | Fixing anchor in stainless steel Charact, resistance in cracked concrete | C20/25 | N. | [kN] | 13.8 | 27.5 | 38.9 | 47.0 | | | Charact, resistance in cracked concrete Charact, resistance in uncracked concrete | C20/25 | | - | 19.3 | 38.5 | 54.5 | 65.7 | | | Charact. Jesistance in uncracked concrete | C25/30 | INRk,p | [kN] | 19.3 | 36.5 | 1.20 | 03.7 | | | | C30/37 | | [-] | | | * | | | | Increasing factors for Al In executed and | C35/45 | | [-] | 1.48 | | | | | | Increasing factors for N _{Rk,p} in cracked and uncracked concrete | C40/50 | | [-] | | | | | | | uniciae/ed conciete | C45/55 | | [-] | 2.00 | | | | | | | C50/60 | Ψ _c | [-] | - | | 2.20 | | | | Partial safety factor | 030/00 | Ψ _c 1) | [-] | 1.50 | | | | | | Effective anchorage depth | | h _{ef} | | M10x75 ³⁾ ; 68.7 | | 7.5 M16x100 ³⁾ : 91.3
7.5 M16x110 ²⁾ : 101.3
M16x125 ³⁾ : 116.3 | M20x1453): 136. | | | Factor to take into account the influence of lo | | | | | | | | | | mechanisms in cracked and uncracked conci | | k _{cr}
k _{ucr} | [-] | | - | 8.5
11.9 | | | | | | 77 | [-]
[-]
[mm] | | 3 | 17.2 | | | | mechanisms in cracked and uncracked conci | | k _{ucr} | [-] | | | 11.9 | | | | mechanisms in cracked and uncracked conci
Characteristic spacing
Characteristic edge distance | | k _{ucr}
s _{cr.H} | [-]
[mm] | | | 11.9
0.0 • h _{ef} | | | | mechanisms in cracked and uncracked conci
Characteristic spacing
Characteristic edge distance
Partial safety factor | | K _{uct}
S _{ct.H}
C _{ct.H} | [-]
(mm)
(mm) | | | 11.9
1.0 • h _{ef} | | | | mechanisms in cracked and uncracked conci
Characteristic spacing
Characteristic edge distance
Partial safety factor
Splitting | | Kucr
Scr.H
Ccr.H
YMc 1) | [-]
[mm]
[mm] | | 1 | 11.9
0.0 • h _{ef}
1.5 • h _{ef}
1.50 | | | | mechanisms in cracked and uncracked conci
Characteristic spacing
Characteristic edge distance
Partial safety factor
Splitting
Minimum thickness of concrete member | | kucr
scr.H
Ccr.H
YMc 1) | [-]
[mm]
[mm]
[-] | | 2 | 11.9
9.0 • h _{ef}
1.5 • h _{ef}
1.50 | | | | mechanisms in cracked and uncracked conci
Characteristic spacing
Characteristic edge distance
Partial safety factor
Splitting
Minimum thickness of concrete member
Characteristic spacing | | K _{ucr} S _{cr,H} C _{cr,H} Y _{Mc} 1) | [-]
[mm]
[mm]
[-]
[mm] | | 2 6 | 11.9
1.0 • h _{ef}
1.5 • h _{ef}
1.50 | | | | mechanisms in cracked and uncracked conci
Characteristic spacing
Characteristic edge distance
Partial safety factor
Splitting
Minimum thickness of concrete member | | K _{UCT} S _{CT,N} G _{CT,N} Y _{MC} h ≥ S _{CT,SP} C _{CT,SP} | [-]
[mm]
[-]
[mm]
[mm] | | 2 6 | 11.9
9.0 • h _{ef}
1.5 • h _{ef}
1.50 | | | | mechanisms in cracked and uncracked conci
Characteristic spacing
Characteristic edge distance
Partial safety factor Splitting Minimum thickness of concrete member Characteristic spacing Characteristic edge distance | rete | K _{uct} S _{ct.N} C _{ct,N} V _{Mo} h ≥ S _{ct.sp} C _{ct,sp} V _{Msp} 1) | [·]
[mm]
[·]
[mm]
[mm]
[mm]
[·] | | 2 6 | 11.9
10.0 • het
1.5 • het
1.50
1.0 • het
1.0 • het
1.0 • het | | | | mechanisms in cracked and uncracked concilination of the concentration o | only stainte | K _{uct} S _{ct.N} C _{ct,N} V _{Mo} h ≥ S _{ct.sp} C _{ct,sp} V _{Msp} 1) | [·]
[mm]
[·]
[mm]
[mm]
[mm]
[·] | | 2 6 | 11.9
10.0 • het
1.5 • het
1.50
1.0 • het
1.0 • het
1.0 • het | | | | mechanisms in cracked and uncracked concilination of the o | only stainte | K _{UCF} S _{CF} , H C _{CF} , H Y _{MC} 1) h ≥ S _{CF} , ap C _{CF} , ap Y _{MSp} 1) SS Steel; | [-]
[mm]
[-]
[mm]
[mm]
[mm]
(-) | galvanised steel | 22 6 3 | 11.9 1.0 • het 1.5 • het 1.50 1.0 • het 1.50 1.0 • het 1.50 1.10 • het 1.50 | | | | mechanisms in cracked and uncracked concilination of the o | only stainte | K _{uct} S _{ct.N} C _{ct,N} V _{Mo} h ≥ S _{ct.sp} C _{ct,sp} V _{Msp} 1) | [·]
[mm]
[·]
[mm]
[mm]
[mm]
[·] | galvanised steel | 2 6 | 11.9
10.0 • het
1.5 • het
1.50
1.0 • het
1.0 • het
1.0 • het | M20
25 | | | mechanisms in cracked and uncracked concilination of the concentration o | only stainte | K _{ucr} S _{cr.Pl} C _{cr,Pl} Y _{Mcc} 1) h ≥ S _{cr.sp} C _{cr,sp} Y _{Msp} 1) Ss steel; | [-]
[mm]
[-]
[mm]
[mm]
[mm]
(-) | galvanised steel | 2 6 3 3 | 11.9 9.0 • h _{ef} 1.5 • h _{ef} 1.50 1.0 • h _{ef} 1.50 1.0 • h _{ef} 1.50 M16 | M20
25
0.2 | | | mechanisms in cracked and uncracked concilination of the concentration o | only stainte | K _{ucr} S _{cr.N} C _{cr,N} Y _{Mcc} 1) h ≥ S _{cr.sp} C _{cr,sp} Y _{Msp} 1) Ss steel; d N | [-]
[mm]
[-]
[mm]
[mm]
[mm]
(-) | galvanised steel | 2 6 3 3 3 M12 12 | 11.9 10.0 • het 1.5 • het 1.50 1.0 • het 1.50 1.0 • het 1.50 1.150 1.150 1.150 | M20
25 | | | mechanisms in cracked and uncracked conci
Characteristic spacing
Characteristic edge distance
Partial safety factor Splitting Minimum thickness of concrete member Characteristic spacing Characteristic edge distance Partial safety factor | only stainte | K _{ucr} S _{cr.H} C _{cr,N} Y _{Mc} 1) h ≥ S _{cr.ap} C _{cr,ap} Y _{Msp} 1) Ss steel; d N δ _{No} | [-]
[mm]
[-]
[mm]
[mm]
[mm]
(-)
3) only | galvanised steel | M12 12 0.5 | 11.9 10.0 • het 1.5 • het 1.50 1.0 • het 1.50 1.0 • het 1.50 M16 19 0.3 | M20
25
0.2 | | ## Page 14 of European Technical Assessment ETA-13/0222 of 4 December 2015 English translation prepared by DIBt | Thread | d | [mm] | M10 | M12 | M16 | M20 | | |---|--|------------------|---|---|--|------------------------------|------------| | Shear loads without lever arm | lk. | lr. | | | 1.0 | | - | | group factor (CEN/TS 1992-4-2, 6.3.3.1) Steel fallure, fixing anchor and screw (min. steet stren | k ₂ | [-] | vanised stool | | 1.0 | | | | Characteristic resistance | V _{Rk,s} | [kN] | 8.8 | 14.6 | 23.7 | 30.7 | | | Partial safety factor | YALS | [-] | 0.0 | 11.0 | 1.45 | 00.7 | _ | | Steel fallure, fixing anchor and screw (min. steel stren | | nede of | stainless steel | | | | _ | | Characteristic resistance | V _{Rk,s} | [kN] | 12.5 | 21.1 | 34.8 | 45.1 | | | Partial safety factor | YMs 1) | [-) | 2.33 | 2.38 | | 2.33 | | | Steel fallure, fixing anchor and screw (min. steel stren | gth A4-70) n | nade of | stainless steel | | | | | | Characteristic resistance | V _{Rk,s} | [kN] | 12.5 | 21.8 | 34.8 | 45.1 | | | Partial safety factor | YMs 1) | [-] | | | 2.33 | | _ | | Shear loads with lever arm | | | | | | | - | | Steel fallure, fixing anchor and screw (min. steel streng | ath 4.6) mad | e of gal | vanised steel | | | | - | | Characteristic resistance | M ⁰ Rks | [Nm] | | 52.4 | 133.2 | 259.6 | | | Partial safety factor | YA(s 1) | [-] | | - | 1.67 | | | | Steel fallure, fixing anchor and screw (min. steel streng | gth 5.6) mad | | vanised steel | | | | | | Characteristic resistance | M ⁰ Rk. | [Nm] | 37.4 | 65.5 | 166.5 | 324.5 | | | Partial safety factor | YA's | [-] | | | 1.67 | 112 | | | Steel fallure, fixing anchor and screw (min. steel strenger | | | | | | | | | Characteristic resistance | M°Rk,s | [Nm] | | 104.8 | 263.8 | 541.4 | | | Partial safety factor | YAM | [-] | 1.45 | 1.25 | | 1.45 | | | Steel fallure, fixing anchor and screw (min. steel streng
Characteristic resistance | gth A4-50) m | - | 37.4 | 05.5 | 100.5 | 1 204.5 | | | Partial safety factor | - 17 | [Nm] | 37.4 | 65.5 | 166.5 | 324.5 | _ | | Steel failure, fixing anchor and screw (min. steel streng | YMs " | [-] | stainless steel | | 2.30 | | _ | | Characteristic resistance | M ⁰ Rka | [Nm] | 52.3 | 91.7 | 233.1 | 454.4 | _ | | Partial safety factor | YM2 1) | [-] | 02.0 | | 1.56 | 101.1 | _ | | Steel failure, fixing anchor and screw (min. steel streng | | | stainless steel | | 1.00 | | | | Characteristic resistance | M ⁰ Rk,s | (Nm) | 101.3 | 104.8 | 388.0 | 796.2 | | | Partial safety factor | YA's 1) | [-] | 2.33 | 1.33 | | 2.33 | | | | | | | | | | | | Pry-out fallure | | _ | Dece == | | diam as | aluan ma | _ | | | | | | | | .0 M20x70: | 1. | | Factor | k ₃ | [-] | | | | .0 M20x100: | 2. | | actor | ,,, | 161 | MITOXIO . Z. | | | .0 M20x145 ³⁾ : | 2. | | | | | | - | | .0 - | | | Partial safety factor | YMcp 1) | [-] | | | 1.50 | | | | | | 1 | | | | | | | Concrete edge fallure (without suppl. reinforcement) | | _ | 1140 50 00 | 011110 50 001 | 11110 00 07 | olugo 70 | 40 | | | | | M10x50: 30.
M10x65 ²⁾ : 45. | 0 M12x50: 29.0
0 M12x70: 49.0 | | .0 M20x70:
.0 M20x100: | 46.
76. | | | l _r | fmm1 | M10x75 ³⁾ . 55. | 0 M12x70: 49.0
0 M12x95 ³⁾ : 74.0 | M16×100 ^{3).} 77 | 0 M20x100. | | | Effective length of fixing anchor (for shear loads) | l'i | [min] | mioxio . co. | M12x115 ²⁾ : 81.4 | M16x110 ²⁾ : 87 | .0 M20x145 ³⁾ : 1 | 121. | | Effective length of fixing anchor (for shear loads) | | | | | 1440-4053). 400 | 0 | | | Effective length of fixing anchor (for shear loads) | | | 15 | | IM16X125 ": 102 | .01 - | | | Effective length of fixing anchor (for shear loads) Effective outside diameter | d _{rom} | [mm] | 13.5 | | M16x125 ³⁾ : 102
21.3 | 26.9 | | | | d _{nom} | [mm] | 13.5 | -
17.0 / 17.2 ⁴⁾ | | | | | Effective outside diameter
Partial safety factor | YMce 1) | [-] | | 17.0 / 17.2 4) | 21.3
1.50 | 26.9 | | | Effective outside diameter | YMce 1) | [-] | | 17.0 / 17.2 4) | 21.3
1.50 | 26.9 | | | Effective outside diameter
Partial safety factor | YMce 1) | [-] | | 17.0 / 17.2 4) | 21.3
1.50 | 26.9 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainte | YMce 1) | [-] | | 17.0 / 17.2 4) | 21.3
1.50 | 26.9 | | | Effective outside diameter
Partial safety factor | YMce 1) | [-] | | 17.0 / 17.2 4) | 21.3
1.50 | 26.9 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainle Table C4: Displacements under shear loads | Y _{Mce} 1) ess steel; 3) o | [-] | ranised steel; 4) h | 17.0 / 17.2 ⁴⁾ igher value applies | 21.3
1,50
for stainless stee | 26.9 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainle Table C4: Displacements under shear loads | YMce 1) | [-] enly galv | ranised steel; ⁴⁾ h | 17.0 / 17.2 ⁴⁾ igher value applies | 21.3
1,50
for stainless stee | 26.9 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainle Table C4: Displacements under shear loads Thread Shear load | Y _{Mice} ¹⁾ ess steel; ³⁾ o | [-]
enly galv | vanised steel; ⁴⁾ h | igher value applies M12 19 | 21.3
1,50
for stainless stee | 26.9
M20
28 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainle Table C4: Displacements under shear loads Thread Shear load Short time displacements | Y _h (ce 1) ess steel; 3) c d V δ _{V0} | [nm] | M10
13
2.0 | 17.0 / 17.2 4) igher value applies M12 19 2.0 | 21.3 1,50 6 for stainless stee M16 24 2.0 | M20
28
3.0 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainle Table C4: Displacements under shear loads Thread Shear load | Y _{Mice} ¹⁾ ess steel; ³⁾ o | [-]
enly galv | M10
13
2.0 | igher value applies M12 19 | 21.3
1,50
for stainless stee | 26.9
M20
28 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainle fable C4: Displacements under shear loads Thread Shear load Short time displacements Long time displacements | Y _h (ce 1) ess steel; 3) c d V δ _{V0} | [nm] | M10
13
2.0 | 17.0 / 17.2 4) igher value applies M12 19 2.0 | 21.3 1,50 6 for stainless stee M16 24 2.0 | M20
28
3.0 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainle Table C4: Displacements under shear loads Thread Shear load Short time displacements | Y _h (ce 1) ess steel; 3) c d V δ _{V0} | [nm] | M10
13
2.0 | 17.0 / 17.2 4) igher value applies M12 19 2.0 | 21.3 1,50 6 for stainless stee M16 24 2.0 | M20
28
3.0 | | | Effective outside diameter Partial safety factor in absence of other national regulations; 2) only stainle fable C4: Displacements under shear loads Thread Shear load Short time displacements Long time displacements | Y _h (ce 1) ess steel; 3) c d V δ _{V0} | [nm] | M10
13
2.0 | 17.0 / 17.2 4) igher value applies M12 19 2.0 | 21.3 1,50 6 for stainless stee M16 24 2.0 | M20
28
3.0 | | Z69829.15 8.06.01-265/15 | Thread size | | d | [mm] | M10 | M12 | M16 | M20 | | |--|-------------|------------------------|--------------------------|--|--|------------------------------|--------------------|--| | Steel fallure for tension and | shear loa | | | | | | | | | fixing anchor and screw made | | | | | | | | | | | R30 | F _{Rk,s,fi} | [kN] | 0.8 | 1.7 | 2.8 | 3.6 | | | Characteristic resistance | R60 | FRK.s.fi | [kN] | 0.7 | 1.3 | 2.1 | 2.7 | | | Onaracionatio resistance | R90 | F _{Rk,s.fi} | (kN) | 0.5 | 1.1 | 1.8 | 2.3 | | | | R120 | FRA,s,fi | [kN] | 0.4 | 0.8 | 1.4 | 1.8 | | | Partial safety factor | | YMa.n 1) | [-] | | 1. | 00 | | | | | R30 | M ⁰ Rk,s,fi | [Nm] | 1.1 | 2.6 | 6.7 | 13.0 | | | Characteristic resistance | R60 | M ⁰ Rks.fi | [Nm] | 1.0 | 2.0 | 5.0 | 9.7 | | | | R90 | M ⁰ Rk.s.fi | [Nm] | 0.7 | 1.7 | 4.3 | 8.4 | | | | R120 | M ⁰ Rksh | [Nm] | 0.6 | 1.3 | 3.3 | 6.5 | | | Partial safety factor | | YMs.fi | [-] | | 1. | 00 | | | | Steal fallure for tension and | | | = N _{Rk,e,fl} = | : V _{flk,s,ff}), | | | | | | fixing anchor and screw made | | | In an I | | | | | | | | R30 | F _{Rk,s,fi} | (kN) | 1.2 | 2.5 | 4.2 | 5.4 | | | Characteristic resistance | R60 | F _{Rk.e.6} | [kN] | 1.0 | 2.1 | 3.5 | 4.5 | | | | R90 | F _{Rk,s,fi} | [kN] | 8.0 | 1.7 | 2.8 | 3.6 | | | D 1 - 1 1 - 1 1 1 | R120 | FRASA | [kN] | 0.7 | 1.3 | 2.2 | 2.9 | | | Partial safety factor | I Doo | YMs.fi | [-] | 1.0 | | 00 | 10.5 | | | | R30 | M ⁰ Rks/i | [Nm] | 1.9 | 3.9 | 10.0 | 19.5 | | | Characteristic resistance | R60 | M ⁰ Rk,s,fi | [Nm] | 1.5 | 3.3 | 8.3 | 16.2 | | | | R90 | M ^U Rk s.fi | [Nm] | 1.2 | 2.6 | 6.7 | 13.0 | | | Dadlel asfatu fastar | R120 | M ⁰ Rk,s,fi | [Nm] | 1.0 | 2.1 | 5.3 | 10.4 | | | Partial safety factor | | YASS, fi | [-] | | 1. | 00 | | | | Pull-oul failure | | | | | | | - | | | | R90 | N _{Rk p.fi} | | | | | | | | Characteristic resistance | R120 | N _{Rk p.fi} | [kN] | $N_{Rk p, f(90)} = 0.25 \cdot N_{Rk p}$ $N_{Rk p, f(120)} = 0.20 \cdot N_{Rk p}$ | | | | | | Partial safety factor | | YMp,fi | [-] | | | 00 | | | | | | | | | | | | | | Concrete cone fallure | | I. | In I | | 0 | 00 | | | | Characteristic resistance | R90 | N _{Rk,c,fi} | [kN] | | NORK.C.F(90) = hef/2(| 00 • N° _{Rk,c} ≤ N° | Rk,c | | | <u> </u> | R120 | N _{Rk,G} fi | [kN] | N, | Rk.c.fi(120) = 0.8 • he | | N° _{Rk,c} | | | Characteristic spacing | | S _{CI.N.h} | [mm] | | | • hel | | | | Characteristic edge distance | | C _{CI,N,fi} | [mm] | | | • h _{ef} | | | | Partial safety factor | | YMo,fi | [-] | | 1. | 00 | | | | Concrete pry-out fallure | _ | | | | | | | | | | R90 | VRILEDI | [kN] | | V _{Ph} co 6/90) = | k3 • NRk.c.f(90) | | | | Characteristic resistance | R120 | VRACPE | [kN] | | | k3 • NRK.c.f(120) | | | | Partial safety factor | 7.5 | YMc,fi | [-] | | | 00 | | | | , | | 1110,11 | 107 | | | | | | | Concrete edge fallure | | | | | | | | | | Characteristic resistance | R90 | VRACA | [kN] | | V ⁰ _{Rk.c.f(90)} = | 0.25 • V ⁰ Rk,c | | | | | R120 | V _{Rk,c,fi} | [kN] | | | 0.20 • V ⁰ Rkc | | | | Partial safety factor | | YMc,fi | [-] | | 1. | 00 | | | |), , , , , , , , , , , , , , , , , , , | | | | | | | | | | in absence of other national | regulations | 3 | | | | | | | | DEMU Fixing anchor T | -FIXX | | | | | | li | | | erformances | | | | | | Annex C3 | | |